# Chapter 2 EXAMINING A DISTRIBUTION

## Example: Ihno’s Experiment

This is the same dataset used in the previous chapter and in most of the textbook’s section C questions.

### Required Packages

library(tidyverse)    # Loads several very helpful 'tidy' packages
library(furniture)    # Nice tables (by our own Tyson Barrett)
library(psych)        # Lots of nice tid-bits

### Data Import and Wrangling

The previous chapter build the following code to read in the dataset and prepare it for analysis.

data_clean <- read_excel("Ihno_dataset.xls") %>%
dplyr::rename_all(tolower) %>%
dplyr::mutate(genderF = factor(gender,
levels = c(1, 2),
labels = c("Female",
"Male"))) %>%
dplyr::mutate(majorF = factor(major,
levels = c(1, 2, 3, 4,5),
labels = c("Psychology",
"Premed",
"Biology",
"Sociology",
"Economics"))) %>%
dplyr::mutate(reasonF = factor(reason,
levels = c(1, 2, 3),
labels = c("Program requirement",
"Personal interest",
dplyr::mutate(exp_condF = factor(exp_cond,
levels = c(1, 2, 3, 4),
labels = c("Easy",
"Moderate",
"Difficult",
"Impossible"))) %>%
dplyr::mutate(coffeeF = factor(coffee,
levels = c(0, 1),
labels = c("Not a regular coffee drinker",
"Regularly drinks coffee")))  %>%
dplyr::mutate(hr_base_bps  = hr_base / 60) %>%
dplyr::mutate(anx_sum      = rowsums(anx_base, anx_pre, anx_post)) %>%
dplyr::mutate(hr_mean      = rowmeans(hr_base + hr_pre + hr_post)) %>%
dplyr::mutate(statDiff     = statquiz - exp_sqz)
tibble::glimpse(data_clean)
Observations: 100
Variables: 27
$sub_num <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,...$ gender      <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,...
$major <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,...$ reason      <dbl> 3, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1,...
$exp_cond <dbl> 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4,...$ coffee      <dbl> 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0,...
$num_cups <dbl> 0, 0, 0, 0, 1, 1, 0, 2, 0, 2, 1, 0, 1, 2, 3, 0, 0,...$ phobia      <dbl> 1, 1, 4, 4, 10, 4, 4, 4, 4, 5, 5, 4, 7, 4, 3, 8, 4...
$prevmath <dbl> 3, 4, 1, 0, 1, 1, 2, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1,...$ mathquiz    <dbl> 43, 49, 26, 29, 31, 20, 13, 23, 38, NA, 29, 32, 18...
$statquiz <dbl> 6, 9, 8, 7, 6, 7, 3, 7, 8, 7, 8, 8, 1, 5, 8, 3, 8,...$ exp_sqz     <dbl> 7, 11, 8, 8, 6, 6, 4, 7, 7, 6, 10, 7, 3, 4, 6, 1, ...
$hr_base <dbl> 71, 73, 69, 72, 71, 70, 71, 77, 73, 78, 74, 73, 73...$ hr_pre      <dbl> 68, 75, 76, 73, 83, 71, 70, 87, 72, 76, 72, 74, 76...
$hr_post <dbl> 65, 68, 72, 78, 74, 76, 66, 84, 67, 74, 73, 74, 78...$ anx_base    <dbl> 17, 17, 19, 19, 26, 12, 12, 17, 20, 20, 21, 32, 19...
$anx_pre <dbl> 22, 19, 14, 13, 30, 15, 16, 19, 14, 24, 25, 35, 23...$ anx_post    <dbl> 20, 16, 15, 16, 25, 19, 17, 22, 17, 19, 22, 33, 20...
$genderF <fct> Female, Female, Female, Female, Female, Female, Fe...$ majorF      <fct> Psychology, Psychology, Psychology, Psychology, Ps...
$reasonF <fct> Advisor recommendation, Personal interest, Program...$ exp_condF   <fct> Easy, Easy, Easy, Easy, Easy, Moderate, Moderate, ...
$coffeeF <fct> Regularly drinks coffee, Not a regular coffee drin...$ hr_base_bps <dbl> 1.183333, 1.216667, 1.150000, 1.200000, 1.183333, ...
$anx_sum <dbl> 59, 52, 48, 48, 81, 46, 45, 58, 51, 63, 68, 100, 6...$ hr_mean     <dbl> 204, 216, 217, 223, 228, 217, 207, 248, 212, 228, ...
\$ statDiff    <dbl> -1, -2, 0, -1, 0, 1, -1, 0, 1, 1, -2, 1, -2, 1, 2,...

## 2.1 Frequency Tables

These tables are best for showing the breakdown of a sample across the levels of a single CATEGORICAL variable (factor). They help pick out the mode(s) and identify unusual or impossible values (Barrett, Brignone, and Laxman 2018).

data_clean %>%
furniture::tableF(majorF)

-----------------------------------------
majorF     Freq CumFreq Percent CumPerc
Psychology 29   29      29.00%  29.00%
Premed     25   54      25.00%  54.00%
Biology    21   75      21.00%  75.00%
Sociology  15   90      15.00%  90.00%
Economics  10   100     10.00%  100.00%
-----------------------------------------

Phobia is one variable that is in between being categorical and continuous.

data_clean %>%
furniture::tableF(phobia)

-------------------------------------
phobia Freq CumFreq Percent CumPerc
0      12   12      12.00%  12.00%
1      15   27      15.00%  27.00%
2      12   39      12.00%  39.00%
3      16   55      16.00%  55.00%
4      21   76      21.00%  76.00%
5      11   87      11.00%  87.00%
6      1    88      1.00%   88.00%
7      4    92      4.00%   92.00%
8      4    96      4.00%   96.00%
9      1    97      1.00%   97.00%
10     3    100     3.00%   100.00%
-------------------------------------

If a variable has many possible values (i.e. it is more continuous than categorical), you can add an option to tell how many values n = # you want displayed in the table, cutting out all the middle values.

data_clean %>%
furniture::tableF(hr_post, n = 10)

--------------------------------------
hr_post Freq CumFreq Percent CumPerc
64      4    4       4.00%   4.00%
65      3    7       3.00%   7.00%
66      3    10      3.00%   10.00%
67      5    15      5.00%   15.00%
68      5    20      5.00%   20.00%
...     ...  ...     ...     ...
79      5    94      5.00%   94.00%
80      1    95      1.00%   95.00%
81      1    96      1.00%   96.00%
82      1    97      1.00%   97.00%
84      2    99      2.00%   99.00%
86      1    100     1.00%   100.00%
--------------------------------------

## 2.2 Bar Charts

These plots are best for showing the breakdown of a sample across the levels of a single CATEGORICAL variable. They help pick out the mode(s) and identify unusual or impossible values (Wickham 2009).

There must be SPACE between the bars!

data_clean %>%
ggplot(aes(majorF)) +
geom_bar()

Here is an example of a two-level variable

data_clean %>%
ggplot(aes(coffeeF)) +
geom_bar()

Here is an example of an 11-level variable

data_clean %>%
ggplot(aes(phobia)) +
geom_bar()

## 2.3 Histograms

These plots are best for showing the distribution of a single CONTINUOUS variable. They help visually determine the shape, center [mean, median, mode(s)], spread [stadard deviation, range], and identify extreme or impossible values (Wickham 2009).

data_clean %>%
ggplot(aes(phobia)) +
geom_histogram()

There must NOT be SPACE between the bars!

Notice how the bars do not touch. This is because the default includes too many bars, many of which are not included in the dataset.

There are TWO ways specify something other than the default:

1. Change the NUMBER of bins: bins = #
2. Change the WIDTH of the bins: binwidth = #

If you try to do BOTH, only the first option will be used and the second will be ignored.

### 2.3.1 Change the Number of Bins

data_clean %>%
ggplot(aes(phobia)) +
geom_histogram(bins = 8)

### 2.3.2 Change the Bin Width

data_clean %>%
ggplot(aes(phobia)) +
geom_histogram(binwidth = 5)

### 2.3.3 Make Seperate Panels -by- a Factor

To make separate plots based on another categorical variable, a FACTOR, we need to add a layer to the plot.

Reminder: Steps before the ggplot() are combined with pipes %>%, whereas layers of the plot are combined with the addition symbol +.

data_clean %>%
ggplot(aes(mathquiz)) +
geom_histogram(binwidth = 4) +
facet_grid(. ~ coffeeF)

data_clean %>%
ggplot(aes(mathquiz)) +
geom_histogram(binwidth = 4) +
facet_grid(coffeeF ~ .)

## 2.4 Percentiles

The quantile(probs = c(#, #, ..., #)) function in the base download of R may be used to request the deciles, quartiles, or other percentiles for a vector for numbers (R Core Team 2017).

To use this function, we have to first pull out one variable of interest from our dataset (data.frame) and make it into a vector. This is done with a dplyr::pull(varname) step (Wickham et al. 2017).

### 2.4.1 Deciles

Deciles break the variable’s values into 10% chunks.

data_clean %>%
dplyr::pull(statquiz) %>%
quantile(probs = c(0, .10, .20, .30, .40, .50, .60, .70, .80, .90, 1))
  0%  10%  20%  30%  40%  50%  60%  70%  80%  90% 100%
1.0  4.0  6.0  6.0  7.0  7.0  8.0  8.0  8.0  8.1 10.0 

#### With Missing Values

If the variable have any missing values, an error message with be outputted instead of what you expect.

data_clean %>%
dplyr::pull(mathquiz) %>%
quantile(probs = c(0, .10, .20, .30, .40, .50, .60, .70, .80, .90, 1))

Error in quantile.default(., probs = c(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, : missing values and NaN's not allowed if 'na.rm' is FALSE

#### Option to Ignore Missing Values

To avoid getting this message and ignore the missing values, use the na.rm = TRUE option.

data_clean %>%
dplyr::pull(mathquiz) %>%
quantile(probs = c(0, .10, .20, .30, .40, .50, .60, .70, .80, .90, 1),
na.rm =TRUE)
  0%  10%  20%  30%  40%  50%  60%  70%  80%  90% 100%
9.0 15.0 21.0 25.2 28.0 30.0 32.0 33.8 37.2 41.0 49.0 

### 2.4.2 Quartiles

Quartiles break variable’s values into 4 chunks. If you include 0 (minimum) and 1 (maximum) you will get the Five Number Summary, which is:

• min, the minimum
• Q1, the 25th percentile
• Q2, the 50th percentile or the Median
• Q3, the 75th percentile
• max, the maximum

These values are used to create boxplots in the next chapter.

data_clean %>%
dplyr::pull(statquiz) %>%
quantile(probs = c(0, .25, .50, .75, 1))
  0%  25%  50%  75% 100%
1    6    7    8   10 

### 2.4.3 Other Percentiles

You may also include any other percentile between 0 and 1.

data_clean %>%
dplyr::pull(statquiz) %>%
quantile(probs = c(.01, .05, .173, .90))
   1%    5% 17.3%   90%
2.98  3.00  5.00  8.10